

Outline:

- Requirements & Strategic Direction
- Preservation & Rehabilitation
- Capacity
- Safety

Utah Legislative Requirement

Utah Code Section 72-1-304

(Enacted by Senate Bill 25, 2005 General Session)

 Directs the Commission, in consultation with the Department and the Metropolitan Planning Organizations in the State, to <u>issue rules that establish</u> <u>a prioritization process</u> for new transportation projects <u>that meet the Department's strategic goals</u>.

Rule R940-6. Prioritization of New Transportation Capacity Projects

• Written to fulfill the directive given by State Code 72-1-304.

Rule R907-68 States, The Department will use the Strategic Goals to:

- First seek to preserve & optimize mobility of the current infrastructure.
- Improve the mobility of the existing system through technology like intelligent transportation systems (ITS), as well as using other tools such as access management, transportation demand management, etc...
- Address safety through projects in preservation and mobility, as well as target specific highway locations for safety improvements.
- Add new capacity projects.

All recommendations to be forwarded to the Transportation Commission for its review/action.

The Department's Strategic Goals:

PRESERVE INFRASTRUCTURE

UDOT is preserving Utah's existing transportation infrastructure. The state's multi-billion dollar investment in roads, bridges and other assets must be maintained for future generations.

OPTIMIZE MOBILITY

UDOT works to optimize traffic mobility through a number of measures, including adding capacity, innovative design, managed lanes, signal coordination and theTravelWise program.

ZERO FATALITIES

UDOT remains committed to safety, and the goal to consistently improve safety on Utah's roads can be summed up in two words: Zero Fatalities.

STRENGTHEN THE ECONOMY

This goal recognizes UDOT's role in creating and managing a transportation system that enables economic growth and empowers prosperity.

Project Selection & Prioritization

Remember...

The Ranking Process is designed to support the **decision-making process**, rather than render a decision.

The process is a means to help the Utah Transportation Commission generally prioritize and rank projects in order of their importance.

Commission can override the process as long as it is discussed in a public meeting and a reason for the decision is documented.

Input - LRP, MPO's, JHC, UDOT, Public, Data

Strengthen Economy

Preserve Infrastructure

Asset Management

Optimize Mobility

- Traffic Demand Management
- AccessManagement
- CapacityPrioritizationProcess

Zero Fatalities

SafetyManagementSystem

Projects

Input - LRP, MPO's, JHC, UDOT, Public, Data

Strengthen Economy

Preserve Infrastructure

Asset Management

Optimize Mobility

- Traffic Demand Management
- AccessManagement
- Capacity Prioritization Process

Zero Fatalities

SafetyManagementSystem

Projects - Preservation, Rehabilitation

- Decisions are based on accurate data, and sound engineering and economic analysis
- Long-term view of assets
- Improved decision making, supported by policies, performance based goals, performance measures, and appropriate levels of service

Automated Pavement Data Collection

Bridge Inspections

Measuring and tracking condition of 1,750 bridges statewide

*dTIMS (Deighton's Total Infrastructure Management System)

DTIMS Funding Distribution **NHPP STP Total** Percent Dist. **Total With Match** 184,703,494 42,380,459 227,083,952 **Capacity/Choke Point** 35,000,000.00 35,000,000 30,000,000.00 30,000,000 **Major Rehabilitation** \$ **Structures** 12,155,000 2,057,000 \$ 14,212,000 **Culverts & Signs** 3,000,000.00 3,000,000 Sub Total = \$ 107,548,494 \$ 37,323,458.69 144,871,952 75% **Purple Book** \$ 80,661,370.20 27,992,594 108,653,964 25% **Orange Book** \$ 26,887,123.40 9,330,865 36,217,988

DTIMS #'s	NHPP	STP
Region 1	24.90%	32.3%
Region 2	42.90%	17.0%
Region 3	15.10%	25.8%
Region 4	17.10%	24.9%

DTIMS Funding Distribution

Orange Book Program - PIN								
Region	Composite %	NHPP	STP	Total				
R-1	26.8%	\$ 6,694,893.73	\$ 3,013,869.29	\$ 9,708,763.02				
R-2	36.2%	\$ 11,534,575.94	\$ 1,586,246.99	\$ 13,120,822.93	2015			
R-3	17.9%	\$ 4,059,955.63	\$ 2,407,363.09	\$ 6,467,318.72	2013			
R-4	19.1%	\$ 4,597,698.10	\$ 2,323,385.30	\$ 6,921,083.40				
Tota	100.0%	\$ 26,887,123.40	\$ 9,330,864.67	\$ 36,217,988.07				

Purple Book Program - PIN								
Region	Composite %	NHPP	STP	Total				
R-1	26.8%	\$ 20,084,681.18	\$ 9,041,607.87	\$ 29,126,289.05				
R-2	36.2%	\$ 34,603,727.81	\$ 4,758,740.98	\$ 39,362,468.80	2015			
R-3	17.9%	\$ 12,179,866.90	\$ 7,222,089.26	\$ 19,401,956.16	2013			
R-4	19.1%	\$ 13,793,094.30	\$ 6,970,155.91	\$ 20,763,250.21				
Total	100.0%	\$ 80,661,370.20	\$ 27,992,594.02	\$ 108,653,964.22				

Input - LRP, MPO's, JHC, UDOT, Public, Data

Strengthen Economy

Preserve Infrastructure

Asset
Management

Optimize Mobility

- Traffic Demand Management
- AccessManagement
- CapacityPrioritizationProcess

Zero Fatalities

SafetyManagementSystem

Projects - ITS, Access, Capacity

Planning

- Metropolitan Planning
 Organizations develop Long
 Range Plans for Urban Areas
 (RTPs)
- UDOT is responsible for the remaining Rural Area of the State (LRP)

Planning

- UDOT and Metropolitan Planning Organizations update the LRP every four years and coordinate several elements:
 - Schedule of Updates
 - Plan Phasing
 - Air Quality Conformity
 - Financial Assumptions

Planning

UDOT Long Range
Transportation Plan 2011-2040

Cache MPO Regional
Transportation Plan 2011 -2035

Dixie MPO Regional Transportation Plan 2011-2040

MAG Regional Transportation Plan 2011-2040

WFRC Regional Transportation Plan 2011-2040

Utah's Unified Transportation Plan

Capacity Prioritization Processes

- Widen Existing Facilities
- 2. New Facilities
- Upgrade Existing At-Grade Intersection
- New Interchange on Existing Freeway
- Upgrade Existing Interchange
- 6. Passing Lanes

Utah Department of Transportation

Statewide Transportation Improvement Program

2014 - 2019

Input - LRP, MPO's, JHC, UDOT, Public, Data

Strengthen Economy

Preserve Infrastructure

Asset Management

Optimize Mobility

- Traffic Demand Management
- AccessManagement
- Capacity Prioritization Process

Zero Fatalities

SafetyManagementSystem

Project Type - Capacity

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity – #1 Widen Existing Facility

Objective	Factor	Max. Score
	Total AADT- Volume of Traffic on a Daily Average	20
	Truck AADT	10
Transportation Efficiency	V/C – Measure of a Highway's Congestion	25
	Functional Class – Measure of Road Importance	5
	Transportation Growth	15
Safety	Safety Score – Combination of Measures	
	Total Possible Points	100

Capacity – #1 Widen Existing Facility

Ranking Factors – Percent Weight

Capacity - #1 Widen Existing Facility

Existing AADT Score					
Min AADT	Score				
0	2				
11,000	4				
33,000	8				
44,000	10				
55,000	12				
66,000	14				
77,000	16				
88,000	18				
99,000	20				

existing truck AA	DI Score
Min Truck AADT	Score
0	1
2,001	2
4,001	4
5,001	5
6,001	6
7,001	7
8,001	8
9,001	9
10,001	10

Existing Truck AADT Score

V/C Score	
Min V/C	Score
0.00	0
0.60	1.25
0.65	2.5
0.75	5
0.80	6.25
0.85	7.5
0.90	10
0.95	12.5
1.00	15
1.05	17.5
1.10	20
1.15	22.5
1.20	25

Capacity - #1 Widen Existing Facility

Functional Class Score

FC	Score	Note
1	5	Rural Interstate
2	3	Rural Other Principal Arterial
6	2	Rural Minor Arterial
7	0	Rural Major Collector
8	0	Rural Minor Collector
9	0	Rural Local
11	5	Urban Interstate
		Urban Other Freeway and
12	4	Expressway
14	4	Urban Other Principal Arterial
16	2	Urban Minor Arterial
17	1	Urban Collector
19	0	Urban Local

Transportation Growth Score

Min Annual Growth	Score
0.0%	3
1.0%	6
2.0%	9
3.0%	12
4.0%	15

Safety Score

Safety Index	Score
0.00	0.0
1.00	2.5
2.00	5.0
3.00	7.5
4.00	10.0
5.00	12.5
6.00	15.0
7.00	17.5
8.00	20.0
9.00	22.5
10.00	25.0

Capacity – #1 Widen Existing Facility

- The Safety Index is a value ranging from: 1 (very good) to 10 (very poor), which represents the degree of risk to the driver, in terms of both crash rate and severity.
- Input/factors include number of crashes, number of high severity crashes, AADT and functional class.
- The crash rate, (crashes/MVMT) and severity (#/per mile), are weighted 1 through 3 for each mile section, by functional classification, giving a crash rate score and a severity score.
- Safety Index (SI) = Crash Rate Score + 3(Severity Score)-2 (SI Range = 1 to 10)

Capacity – #1 Widen Existing Facility – Example: Redwood Road; Bangerter Hwy To 12600 South

Capacity — #1 Widen Existing Facility
Example: Redwood Road; Bangerter Hwy To 12600 South

Project	2011 AADT	Truck AADT	FC	V/C	Safety Score	Ave Trans. Growth	Total	Rank
Redwood Road; Bangerter Hwy To 12600 South	21,597	1,300	14	1.2	8.5	3.8%		
Score	4	I	4	22.5	21.25	12	65	#7

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity - #2 New Facility

Objective	Factor	Max. Score
	Projected AADT on New Facilities in 2040	25
	Projected Truck AADT on New Facilities in 2040	15
Transportation Efficiency	V/C on Existing System if Corridor is not Built	30
	% V/C Improvement on System if Corridor is Built	30
	Total Possible Points	100

Capacity – #2 New Facility

Ranking Factors – Percent Weight

Capacity - #2 New Facility

Future AADT Score					
Min AADT	Score				
0	2.5				
16,000	5				
24,000	7.5				
32,000	10				
48,000	15				
56,000	17.5				
64,000	20				
72,000	22.5				
80,000	25				

Improve V/C Score

• •	
Percent	
Improvement	Score
0.0%	0
5.0%	3
10.0%	6
15.0%	12
20.0%	21
25.0%	30

Future Truck AADT Score

Min Truck AADT	Score
0	1.5
1,600	3
2,400	4.5
3,200	6
4,800	9
5,600	10.5
6,400	12
7,200	13.5
8,000	15

No Build V/C Score

Score		
0.0		
1.5		
3.0		
4.5		
6.0		
7.5		
9.0		
12.0		
15.0		
18.0		
27.0		
30.0		

Capacity – #2 New Facility

Example: SR-193; Extension, 2000 West to State Street

Capacity – #2 New Facility

Example: SR-193; Extension, 2000 West to State Street

Project	2040 AADT	2040 Truck AADT	NO Build V/C	% System Improvement, with new facility	Total	Rank
SR-193; Extension, 2000 West to State Street	21,644	3,161	.99	45.5%		
Score	5	4.5	15	30	55	#8

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity – #3 Upgrade Existing At-grade Intersection

Objective	Factor	Max Score
	Total AADT- Volume of traffic on a daily average for both mainline and arterial	20
Transportation	Daily Vehicle Hours Saved - Estimate based on travel time savings per vehicle	30
Efficiency	Benefit Cost Ratio - Total user cost benefit from delay savings divided by the net cost of the interchange after local participation	25
Safety	Safety Score – Combination of measures	25
	Total Possible Points	100

Capacity – #3 Upgrade Existing At-Grade Intersection

Ranking Factors – Percent Weight

Capacity - #3 Upgrade Existing At-Grade Intersection

Future Entering Traffic Score

Min AADT	Score
0	0
40,000	4
50,000	8
60,000	12
70,000	16
80,000	20

Vehicle Hours Saved Score

Min Hours Saved	Score
0	0
300	6
400	12
500	18
600	24
700	30

Benefit-Cost Score

B-C Ratio	Score
0.0	0
2.0	5
4.0	10
6.0	15
8.0	20
10.0	25

Safety Score

afety Index	Score
0.00	0.0
1.00	2.5
2.00	5.0
3.00	7.5
4.00	10.0
5.00	12.5
6.00	15.0
7.00	17.5
8.00	20.0
9.00	22.5
10.00	25.0

Capacity – #3 Upgrade Existing At-grade Intersection Example: US-89; Antelope Dr. Intersection Improvements

Project	2040 AAD T	B/C	Daily Vehicle Hours Saved	Safety Score	Total	Rank
US-89; Antelope Dr. Intersection Improvement s	86,000	2.2	717	5.5		
Score	20	5	30	13.8	69	#5

Capacity – #3 Upgrade Existing At-grade Intersection Example: US-89; Antelope Dr. Intersection Improvements

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity – #4 New Interchange On Existing Freeway

Objective	Factor	Max Score
	Total Ramp Daily Traffic- Total Estimated AADT for all 4 Ramps	20
	Daily Vehicle Hours Saved – Estimate based on travel time savings using existing transportation system	30
Transportation Efficiency	Benefit Cost Ratio – Total user cost benefit from delay savings divided by the net cost of the interchange after local participation	35
	Adjacent Interchange V/C – Measures the effect on adjacent interchange	10
	Distance to Adjacent Interchanges – Addresses spacing and accessibility issues	5
	Total Possible Points	100

Capacity – #4 New Interchange On Existing Freeway

Ranking Factors – Percent Weight

Capacity – #4 New Interchange On Existing Freeway

Future Ramp Traffic Score		Vehicle Hours Saved Score		Benefit-Cost Score	
Min AADT	Score			B-C Ratio	Score
0	0	Min Hours Saved	Score	0.0	0
10,000	4	0	0	2.0	7
15,000	8	300	6	4.0	14
20,000	12	400	12	6.0	21
25,000	16	500	18	8.0	28
30,000	20	600	24	10.0	35
•		700	30	ı	

Adjacent Interchange Future V/C Score

Min V/C	Score
-5.00	0
0.0	2
0.10	4
0.15	6
0.20	8
0.25	5 10

Distance to Adjacent Interchange Score

Distance		Score
	0.0	0
	1.0	1
	1.5	2.5
	2.0	5

Capacity — #4 New Interchange On Existing Freeway Example: I-15; SR-37 Interchange and 1800 N. Widening

Capacity — #4 New Interchange On Existing Freeway Example: I-15; SR-37 Interchange and 1800 N. Widening

Project	2040 Ramp AADT	B/C	Daily Vehicle Hours Saved	Adjacent Interchange Future V/C	Average Distance To Adjacent Interchange	Total	Rank
I-15 Interchange at 1800 North	41,000	2.1	683	0.33	1.10		
Score	20	7	24	10	Ι	62	#I

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity – #5 Upgrade Existing Interchange

Objective	Factor	Max Score
	Future Ramp Daily Traffic- Total Estimated AADT for all 4 Ramps	20
Transportation Efficiency	Daily Vehicle Hours Saved – Estimate based on travel time savings using existing transportation system	30
	Benefit Cost Ratio – Total user cost benefit from delay savings divided by the net cost of the interchange after local participation	25
Safety	Safety Score – Combination of Measures	25
	Total Possible Points	100

Capacity – #5 Upgrade Existing Interchange

Ranking Factors – Percent Weight

Capacity – #5 Upgrade Existing Interchange

Future Ramp Traffic Score

Min AADT	Score
0	0
10,000	4
20,000	8
30,000	
40,000	
50,000	20

Safety Score

Safety Index	Score
0.00	0.0
1.00	2.5
2.00	5.0
3.00	7.5
4.00	10.0
5.00	12.5
6.00	15.0
7.00	17.5
8.00	20.0
9.00	22.5
10.00	25.0

Vehicle Hours Saved Score

Min Hours Saved	Score
0	0
100	6
200	12
300	18
400	24
500	30

Benefit-Cost Score

B-C Ratio	Score
0.0	0
1.0	5
2.0	10
3.0	15
4.0	20
6.0	25

Capacity — #5 Upgrade Existing Interchange Example: I-15; MP 8 Interchange Reconfiguration (DDI)

Capacity – #5 Upgrade Existing Interchange Example: I-15; MP 8 Interchange Reconfiguration (DDI)

Project	2040 Ramp AADT	B/C	Daily Vehicle Hours Saved	Vehicle Index Hours		Rank
I-15 Interchange at 1800 North	138,000	13.5	1150	4.0		
Score	20	25	30	10	85	#5

Prioritization Processes

- I. Widen Existing Facilities
- 2. New Facilities
- 3. Upgrade Existing At-Grade Intersection
- 4. New Interchange on Existing Freeway
- 5. Upgrade Existing Interchange
- 6. Passing Lanes

Capacity – #6 Passing Lanes

Objective	Factor	Max Score
	Existing AADT	30
Transportation Efficiency	Existing Truck AADT	20
	Primary Freight Corridor	20
Safety	Safety Index – Combination of Measures	30
	Total Possible Points	100

Capacity – #6 Passing Lanes

Ranking Factors – Percent Weight

Capacity – #6 Passing Lanes

Score
0.0
3.0
6.0
9.0
12.0
15.0
18.0
21.0
24.0
27.0
30.0
_

Primary Freight Corridor Score

Classification	Score
Energy Route	15
Interstate	5
Major Route	20
No	0

Capacity – #6 Passing Lanes

Example: I-80; MP 136 to 143, Lambs Canyon to Kimball

Junction

Capacity – #6 Passing Lanes

Example: I-80; MP 136 to 143, Lambs Canyon to Kimball

Junction

Project	Existing AADT	Existing Truck AADT	Primary Freight Corridor	Safety Index	Total	Rank
I-80; MP 136 to 143, Lambs Canyon to Kimball Junction	45,490	12,320	Interstate	7.0		
Score	30	20	5	21	76	#2

Plan to Program

Input - LRP, MPO's, JHC, UDOT, Public, Data

Strengthen Economy

Preserve Infrastructure

Asset
Management

Optimize Mobility

- Traffic Demand Management
- AccessManagement
- CapacityPrioritizationProcess

Zero Fatalities

SafetyManagementSystem

Projects - Safety Improvements

- Highway Safety Improvement Program
- Safe Routes to Schools
- Railroad Crossing

- State Spot Safety Improvement Program
- •State Barrier
- State Lighting
- State Signals

Planning Stage

Analysis Stage

Project Prioritization Factors

- •Greatest Benefit to Reduce Fatal and Serious Injury Crashes
- •Benefit-To-Cost Ratio
- Timeline to Completion
- Coordination with Other Projects

